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Clustering and viscosity in a shear flow of a particulate suspension
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A shear flow of particulate suspension is analyzed for the qualitative effect of particle clustering on viscosity
using a simple kinetic clustering model and direct numerical simulations. The clusters formed in a Couette flow
can be divided into rotating chainlike clusters and layers of particles at the channel walls. The size distribution
of the rotating clusters is scale invariant in the small-cluster regime and decreases rapidly above a characteristic
length scale that diverges at a jamming transition. The behavior of the suspension can qualitatively be divided
into three regimes. For particle Reynolds number Rep&0.1, viscosity is controlled by the characteristic cluster
size deduced from the kinetic clustering model. For Rep;1, clustering is maximal, but the simple kinetic
model becomes inapplicable presumably due to onset of instabilities. In this transition regime viscosity begins
to increase. For Rep*10, inertial effects become important, clusters begin to breakup, and suspension displays
shear thickening. This phenomenon may be attributed to enhanced contribution of solid phase in the total shear
stress.
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I. INTRODUCTION

The dynamics of systems composed of solid particles s
pended in a fluid are important in natural as well as tech
logical processes. The flow of blood is just one example
an important~and complicated! suspension flow appearing i
nature. Spreading of paint is another everyday example,
of shear flows of suspensions which typically appear
‘‘technological’’ processes.

The behavior of a suspension strongly depends on
volume fraction of the solid particles,f. In the limit of small
f and vanishing Reynolds number, the relative viscosityh r ,
defined as the ratio of the viscosity of the suspension to
of the pure fluid, is well approximated by Einstein’s formu
@1#

h r5112.5f1O~f2!. ~1!

Close to the~random! dense packing limit, the effects of th
fluid mostly vanish,h r diverges, and suspension become
wet granular medium@2#. If cohesive forces exist betwee
particles, the suspension may even transform into a solid@3#.

For a nonzerof, h r also depends on the particle Re
nolds number Rep ~see below!. Experiments indicate@4# that,
for low Rep, h r decreases, and for Rep*1, h r increases with
increasing Rep ~shear rate!. A qualitative explanation sug
gested@5# to this behavior is that, for very low Rep, sus-
pended particles are randomly distributed due to Brown
motion. As the shear rate increases, hydrodynamic forces
gin to organize particles in layers oriented perpendicula
the velocity gradient. This increasing ordering allows p
ticles to move past each other without colliding and leads
the observed decrease ofh r , i.e., to shear thinning. Above
distinct value of Rep near unity these layers seem to vanis
At this point a sudden increase ofh r , i.e., shear thickening
is observed@6#. Another qualitative explanation suggested
the strong shear thickening for Rep.1 is enhanced clusterin
of particles@7,8#. Large clusters are assumed to provide
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ficient mechanisms for momentum transfer, and to ther
increaseh r . As the cluster size grows, the suspension
proaches a jamming transition@9#, and h r}(f2fc)

2a as
f→fc . This form for h r is similar to the semiempirica
Krieger formula@10# for which a'2 andp/6&fc&0.74~in
2D a'2 andfc'p/4), which is in good agreement with
experimental results for low Rep. For higher Rep’s one
would expect a similar divergence to occur, but with valu
for a andfc that may depend on Rep.

It has proved quite difficult to obtain conclusive expe
mental evidence to validate~or invalidate! the various micro-
scopic mechanisms that have been suggested for the
served macroscopic behavior of liquid-particle suspensio
In this investigation we use a schematic clustering mo
together with numerical simulations to study the ba
mechanisms underlying the shear thickening behavior of p
ticulate suspensions, in a regime where Brownian mot
and the associated shear thinning can be neglected. The
tering model introduced below is based on very generic
guments applicable in Couette flow. It yields a specific fun
tional form for the cluster-size distribution and suggests
general dimensional relation forh r . The model predictions
are tested using direct numerical simulations. For simplic
we use here a two-dimensional~2D! numerical solution. It
can be argued, however, that most of thequalitative results
thus obtained can be generalized to 3D flows.

The most important result is that at low Reynolds nu
bers a link is established between the well-known se
empirical Krieger formula for effective viscosity and the g
neric cluster-size distribution. This result explains, at le
partially, the physical origin of the Krieger formula. Not ver
surprisingly, for higher Reynolds-number values inertial
fects become increasingly important, and the generic clus
ing model gradually loses its validity.

II. CLUSTERING MODEL

We now consider general aspects of particle clustering
a low Rep Couette flow. We ignore Brownian motion an
©2003 The American Physical Society03-1
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RAISKINMÄ KI et al. PHYSICAL REVIEW E 68, 061403 ~2003!
assume that particles can interact by elastic collisions an
hydrodynamic ‘‘lubrication’’ forces. For very low Rep’s the
hydrodynamic forces acting on the particles are those
Stokes flow, and the particles move according to a lin
~Newtonian! fluid-velocity profile, until they encounter an
other particle. As lubrication forces dominate the partic
particle interactions, these ‘‘collisions’’ are almost perfec
inelastic, and colliding particles will stay together for som
time and form a ‘‘cluster.’’ These clusters will evolve in tim
and form a definite cluster-size distribution in a stationa
flow.

Consider a part of the suspension located within a lo
and narrow tubular volume elements at a small angle ac
the shear cell, such that the flow velocity at the trailing end
higher than at the leading end of the element~Fig. 1!. Ini-
tially the particle centers of mass are sparsely located
uncorrelated in the tube so that their density distribution
Poissonian. As this imaginary tube rotates in the shear ve
ity field, it will become broader and shorter. Particles ther
will approach each other and begin to collide. Ifm particles
come within a range ofmd, whered is the particle diameter
a cluster of sizem will be formed. According to this kinetic
clustering model~KCM!, the cluster-size distributionn(m)
is then given by

n~m!5
1

m

~ml!me2ml

m!
, ~2!

wherel is the average number of particles in a unit length
the tube. Here,d is set to unity. The linear densityl can be
related to the volume fractionf of particles byl5f/fc ,
wherefc is the volume fraction at maximum linear densit
Using Stirling’s formula form!, we then find that

n~m!}m21.5exp~2m/m0!, ~3!

wherem051/@f/fc2 ln(f/fc)21#. The distribution Eq.~3!
is scale invariant form!m0 and it decreases rapidly form
.m0. The crossover cluster sizem0 diverges whenf
reachesfc , which indicates that infinitely large clusters a
pear in the system in this limit. This divergence represen
jamming limit at which viscosity is also expected to diver

FIG. 1. Schematic presentation of the KCM model.
06140
by

f
r

-

y

g
ss
s

d
s
c-
n

f

a

@9#. Sincem0 is the only variable related to clustering, w
would expect the relative viscosity in the Stoke’s flow r
gime to be of the form

h r511 f ~m0!, ~4!

in which 1 relates to the viscosity of the pure fluid, andf is
an unknown~‘‘scaling’’ ! function that describes the part o
the viscosity which originates from the clustered particles

III. NUMERICAL MODEL

In order to test Eq.~3!, and to extractf, we performed
numerical simulations of liquid-particle suspension in a 2
shear flow. The numerical algorithm used here is that of
nine-link lattice-Boltzmann~LB! method@11–14#. It is based
on solving a discretized Boltzmann equation for the flu
phase on a regular lattice. The solid particles move conti
ously in space and collide with each other and with bound
walls. Hydrodynamic interaction~momentum exchange! be-
tween the solid phase and the Newtonian fluid phase is ta
into account by applying the no-slip boundary condition
the boundary nodes. The forces from this interaction a
from the collisions determine the translation and rotation
the suspended solid particles according to Newtonian
namics. Note that the LB method used here accounts fo
hydrodynamic effects present in the Navier-Stokes equat
including viscous forces, pressure forces, and inertial effe
A more detailed description of the method can be found
Ref. @14# and our benchmarking results in Ref.@15#.

The shear-flow condition was realized by placing the s
pension between two walls separated by distanceh ~cf. Fig.
2!, such that the walls moved with speedvw in opposite
directions. Periodic boundary conditions were imposed in

FIG. 2. ~Color online! Snapshots of suspensions for Rep50.1
~a!, Rep51 ~b!, and Rep510 ~c!; f50.4. A few clusters are indi-
cated. The walls with distance 130 lu move in opposite directio
creating a shear field. Fluid velocity is indicated by gray scale
that white indicates high velocity~in addition the color bar on the
right indicates the velocity scale in lattice units!.
3-2
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flow direction. The density of the suspended particles w
2.5 times that of the carrier fluid, and no Brownian moti
was implemented.

The volume fraction~area fraction! of the particles was
varied betweenf50.20 and f50.45. These values ar
clearly above the regime in which Eq.~1! is valid, and below
the jamming transition limit which for the 2D case consi
ered here is that of a regular square lattice of spherical
ticles, i.e.,fc5p/4. In the used numerical method the kin
matic viscosity of the carrier fluid is related to the L
relaxation parametert by n5(2t21)/6. Here we usedt
50.55 wherebyn51/60 @in lattice units~lu!#. The particle
Reynolds number Rep5gd2/n, with g52vw /h the mean
shear rate, was varied between 0.001 and 13. The size o
simulation grid was 1303450 lattice points and the particl
diameter 12 lu. A few larger simulations with 2603900 grid
size were performed in order to estimate the finite-size
fects.

IV. RESULTS

Figure 2 shows snapshots of suspensions for particle R
nolds numbers Rep50.1, 1, and 10. Some typical partic
aggregates~clusters! are indicated in the figure. Cluster
were identified such that the largest allowed distance
tween the nearest-neighbor particles within an aggregate
one lu. In accordance with the common view discuss
above, two types of clusters with quite distinct characteris
indeed appear in the 2D flow. Near the moving walls, ho
zontal layers of particles can be found. These layers ap
at a relatively low Rep and their formation mechanism i
most likely related to lateral hydrodynamic forces~lift
forces! exerted on particles moving near a solid wall@16#.
The dynamics of these layers is not studied here in m
detail. In the interior of the flow channel, chainlike cluste
form and rotate under the shear flow, much in accorda
with the generic clustering model discussed above.

In the entire region covered by the present simulations
size distribution of the rotating clusters is indeed given
Eq. ~3! as predicted by the KCM. This is demonstrated
Fig. 3~a!. Thus,m0 is the only parameter indicative of cluste
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FIG. 3. ~a! Cluster-size distributions forf50.4: Rep50.01~n!,
Rep50.1 ~h!, Rep51.0 ~s!. The solid lines indicate the distribu
tions predicted by KCM.~b! m0 as a function off for Rep50.06
~h!,0.3 ~j!,0.8 ~d!,1.4 ~m!; the channel width ish5130. For
Rep50.06 another channel width was also used,h5260(s). The
solid line is the theoretical relation Eq.~6!.
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size. In general the size distribution may, however, dep
on bothf and Rep.

Given this basic result, we now proceed to seek
cluster-size parameterm0, andh r , in the form

m05m0~f,Rep!, h r5h r~f,Rep!. ~5!

In particular, we test against numerical results the t
additional explicit predictions of the KCM model, name
that h r is a function of onlym0, and thatm0 is given in
terms of the volume fraction of particles as

m05m0
KCM~f![F f

fc
2 lnS f

fc
D21G21

. ~6!

The present numerical simulations show qualitatively diff
ent behavior in three distinct flow regimes: viscous regi
for Rep&0.1, transition regime for Rep;1, and inertial re-
gime for Rep*10.

In the viscous regime there is no visible formation
particle layers near the walls and the average size of
rotating clusters is small as can be seen in e.g., Fig. 2~a!. A
comparison between Eq.~6! and simulation results reveals
close to perfect agreement in this region@Fig. 3~b!#. ~For
larger values of Rep, m0 increases considerably.! The aver-
age velocity profile across the channel displays only sm
fluctuations around a Newtonian~straight! profile, as demon-
strated in Fig. 4~a!. This regime is thus that of laminar Stoke
flow. We would consequently expect the effective viscos
to have little, if any, Rep dependence. This is confirmed i
Fig. 4~b!. We can then proceed to extract the functionf of Eq.
~4!. This can be done by plottingh r21 as a function ofm0.
The result is shown in Fig. 5. For the lowest values of Rep a
linear function f (m0)'0.5m0 gives a reasonable fit to th
simulation data. It is also worth noting that when this form
f is inserted in Eq.~4!, the Krieger formula is found forf/fc
close to unity. For comparison, the Krieger formula
2f/fc)

22 with f5f(m0) via Eq.~6! is also shown in Fig.
5~a!. In the viscous regime we thus havem05m0

KCM(f),
and
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FIG. 4. ~a! Difference of the simulatedv and NewtonianvN

velocity profile, normalized byvw as a function of distance from th
lower wall, for Rep50.1 ~solid line!, Rep51.0 ~dotted line!, and
Rep510.0 ~broken line!. ~b! Apparent and intrinsic viscosities a
functions of Rep for h5130 ~broken line,s) and h5260 ~solid
line, l!, respectively.
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h r5h r~m0!'110.5m0'S 12
f

fc
D 22

, ~7!

which means thath r depends only onm0 given by the KCM
model.

In the transition regime wall layers develop and reac
their maximum average size. Also the size of the rotatin
clusters~i.e., m0) grows considerably. Both these effects ar
visible in Fig. 2~b!. However,m0 is no longer given by Eq.
~6! as can be seen from Fig. 3~b!. Also h r grows in this
regime but not in proportion to the increase inm0. In the
transition regime

m05m0~f,Rep!.m0
KCM~f!,

h r5h r~m0 ,Rep!,110.5m0 . ~8!

In this regime we thus have the general form of Eq.~5!
without any reduction of dependencies. This means that
KCM model now fails, except for the form of the cluster-siz
distribution. The velocity profile deviates from the Newton
ian one, and an S-shaped profile with higher shear close
the walls is developed@Fig. 4~a!#. Consequently, two differ-
ent definitions of viscosity are possible: intrinsic viscosit
which is a bulk property calculated using the shear rate in t
middle of the channel, and apparent viscosity calculated
ing the average shear rate~measurable but affected by the
flow profile, i.e., boundary layers!. The two viscosities are
displayed in Fig. 4~b! for a few values of Rep.
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FIG. 5. ~a! h r21 as a function ofm0 for Rep<1 andf50.2
~s!,0.3 ~h!,0.35 ~n!,0.4 (L),0.45((). The filled symbols indi-
cate Rep50.06. ~b! Rep<13.0. Filled symbols correspond to the
inertial regime, whereinm0 slightly decreases. The solid line and
the dotted line indicate the results of Krieger formula with powe
21.8 and22.0, respectively. The broken line is 110.5m0.
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Above Rep;10 flow instabilities arise signifying an in
cipient inertial regime. In these conditions particle laye
near the walls largely disappear. The typical cluster size
side the flow region also starts to decrease due to stro
velocity fluctuations. This is seen as a slight decrease ofm0
when compared to the transition regime@Fig. 5~b!#. The un-
reduced form of Eq.~5! is valid. The S shape of the velocit
profile becomes more pronounced@Fig. 4~a!# and h r in-
creases rapidly with increasing Rep @Fig. 4~b!#. Based on our
earlier work@17#, this shear thickening seems to be related
the enhanced relative contribution of the solid phase in
total shear stress. The increased particulate stress arise
to inertial effects resulting in enhanced fluid-particle intera
tion through pressure forces@18#.

V. CONCLUSION

In conclusion, we used a generic KCM to study the ba
mechanisms underlaying shear thickening of particulate s
pensions in the regime where hydrodynamical forces do
nate. We also performed direct numerical simulations o
2D shear flow using the lattice-Boltzmann method. We e
pect the results obtained to be qualitatively valid also for
flows.

The cluster-size distribution of the suspended particle
scale invariant below an exponential cutoff@see Eq.~3!# in
the regime covered by the present simulations. Three qu
tatively different flow regimes were identified. In the visco
regime where the particle Reynolds number Rep&0.1, chain-
like clusters rotating in the shear field are comparativ
small, and the relative viscosityh r is a function of only the
typical cluster size given by the KCM model. In this regim
the KCM model can be linked to the Krieger formula v
Eqs. ~6! and ~7!. This suggests that the origin of the rath
universal validity of Krieger formula at least partially find
its explanation in the general assumptions of the KC
model. In the transition regime Rep;1, the size of the clus-
ters grows considerably, but the typical size is no long
given by the KCM model. Alsoh r begins to grow with Rep,
but not in proportion to the growth of the cluster size. Iner
begins to take effect already in the transition regime,
especially in the third~inertial! regime where Rep*10. In
the inertial regime flow becomes more unstable and ther
no simple correlation betweenh r and cluster size. The pro
nounced shear thickening in this regime seems to be rel
to enhanced relative contribution of the solid phase to
total shear stress in the suspension.
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