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Clustering and viscosity in a shear flow of a particulate suspension
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A shear flow of particulate suspension is analyzed for the qualitative effect of particle clustering on viscosity
using a simple kinetic clustering model and direct numerical simulations. The clusters formed in a Couette flow
can be divided into rotating chainlike clusters and layers of particles at the channel walls. The size distribution
of the rotating clusters is scale invariant in the small-cluster regime and decreases rapidly above a characteristic
length scale that diverges at a jamming transition. The behavior of the suspension can qualitatively be divided
into three regimes. For particle Reynolds numbeg=R& 1, viscosity is controlled by the characteristic cluster
size deduced from the kinetic clustering model. FogpRe, clustering is maximal, but the simple kinetic
model becomes inapplicable presumably due to onset of instabilities. In this transition regime viscosity begins
to increase. For Rez 10, inertial effects become important, clusters begin to breakup, and suspension displays
shear thickening. This phenomenon may be attributed to enhanced contribution of solid phase in the total shear
stress.
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[. INTRODUCTION ficient mechanisms for momentum transfer, and to thereby
increaser, . As the cluster size grows, the suspension ap-
The dynamics of systems composed of solid particles sugproaches a jamming transitid®], and 7,<(¢—¢;)~« as
pended in a fluid are important in natural as well as techno¢— ¢¢. This form for », is similar to the semiempirical
logical processes. The flow of blood is just one example of<rieger formula[10] for which a~2 and7/6=< ¢.=<0.74(in
an importaniand complicatedsuspension flow appearing in 2D @~2 and ¢ ~m/4), which is in good agreement with
nature. Spreading of paint is another everyday example, als®xperimental results for low Re For higher Rgs one
of shear flows of suspensions which typically appear inwould expect a similar divergence to occur, but with values
“technological” processes. for & and ¢ that may depend on Re
The behavior of a Suspension Strong|y depends on the It has proved qUItedlfflcult to Obtaln COI’IC'}JSiVQ ?Xperi'
volume fraction of the solid particlegs. In the limit of small ~ mental evidence to validater invalidate the various micro-
¢ and vanishing Reynolds number, the relative viscosity ~ SCopic mechanisms that have been suggested for the ob-
defined as the ratio of the viscosity of the suspension to thaierved macroscopic behavior of liquid-particle suspensions.

of the pure fluid, is well approximated by Einstein’s formula In this investigation we use a schematic clustering model
[1] together with numerical simulations to study the basic

mechanisms underlying the shear thickening behavior of par-
7, =1+2.55+0(p?). (1) ticulate suspe'nsions, in a .reg'ime where Brownian motion
and the associated shear thinning can be neglected. The clus-

Close to therandom dense packing limit, the effects of the tering model introduced below is based on very generic ar-
fluid mostly vanish,, diverges, and suspension becomes gduments applicable in Coue’gte ﬂo_vv. !t y|9Ids a specific func-
wet granular mediunj2]. If cohesive forces exist between tional form for the cluster-size distribution and suggests a
particles, the suspension may even transform into a §8Jid ~9eneral dimensional relation foy, . The model predictions
For a nonzerap, 7, also depends on the particle Rey- aré tested using direct numerical simulations. For simplicity,
nolds number Re(see below. Experiments indicatg4] that, we use here a two-dimension&D) numeric_al ;olution. It
for low Re,, 7, decreases, and for Re1, 7, increases with can be argued, however, that. most of thealitative results
increasing Rg (shear ratg A qualitative explanation sug- thus obtained can be generalized to 3D flows.
gested[5] to this behavior is that, for very low Re sus- The most important result is that at low Reynolds num-
pended particles are randomly distributed due to BrowniarP®rs @ link is established between the well-known semi-
motion. As the shear rate increases, hydrodynamic forces b&mPpirical Krieger formula for effective viscosity and the ge-
gin to organize particles in layers oriented perpendicular td'€"iC cIuster—S|ze.d|str|pl1_t|on. This result explains, at least
the velocity gradient. This increasing ordering allows par-Partially, the physical origin of the Krieger formula. Not very
ticles to move past each other without colliding and leads t¢UrPrisingly, for higher Reynolds-number values inertial ef-
the observed decrease gf, i.e., to shear thinning. Above a fects become increasingly important, and the generic cluster-
distinct value of Rgnear unity these layers seem to vanish.'"9 model gradually loses its validity.
At this point a sudden increase @f, i.e., shear thickening,
is observed6]. Another qualitative explanation suggested to
the strong shear thickening for Rel is enhanced clustering We now consider general aspects of particle clustering in
of particles[7,8]. Large clusters are assumed to provide ef-a low Rg Couette flow. We ignore Brownian motion and

Il. CLUSTERING MODEL
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FIG. 1. Schematic presentation of the KCM model.

assume that particles can interact by elastic collisions and b
hydrodynamic “lubrication” forces. For very low Ris the
hydrodynamic forces acting on the particles are those of _ _
Stokes flow, and the particles move according to a linear F!G- 2. (Color onling Snapshots of suspensions for,R@.1
(Newtonian fluid-velocity profile, until they encounter an- (@ R&=1 (b), and Rg=10 (c); ¢=0.4. A few clusters are indi-
other particle. As lubrication forces dominate the particle-cated- The walls with distance 130 lu move in opposite directions
particle interactions, these “collisions” are almost perfectly Créating a shear field. Fluid velocity is indicated by gray scale so
inelastic, and colliding particles will stay together for somet!1at V.Vh't.e indicates h'gh velocny_n add'mon the color bar on the
time and form a “cluster.” These clusters will evolve in time right indicates the velocity scale in lattice units

and form a definite cluster-size distribution in a stationary[g] Sincem, is the only variable related to clustering, we
flow. ' ’

Consid t of th ion located withi | would expect the relative viscosity in the Stoke’s flow re-
onsider a part of the suspension located within a Ong%ime to be of the form

and narrow tubular volume elements at a small angle acro
the shear cell, such that the flow velocity at the trailing end is 7=1+f(my), (4)
higher than at the leading end of the elemérag. 1). Ini-

tially the particle centers of mass are sparsely located anih which 1 relates to the viscosity of the pure fluid, anid
uncorrelated in the tube so that their density distribution isan unknown(“scaling”) function that describes the part of
Poissonian. As this imaginary tube rotates in the shear veloghe viscosity which originates from the clustered particles.
ity field, it will become broader and shorter. Particles therein

will approach each other and begin to collidenifparticles IIl. NUMERICAL MODEL

come within a range aind, whered is the particle diameter,
a cluster of sizem will be formed. According to this kinetic
clustering modelKCM), the cluster-size distribution(m)
is then given by

In order to test Eq(3), and to extract, we performed
numerical simulations of liquid-particle suspension in a 2D
shear flow. The numerical algorithm used here is that of the
nine-link lattice-BoltzmanrLB) method11-14. It is based
on solving a discretized Boltzmann equation for the fluid
, 2 phase on a regular lattice. The solid particles move continu-
m! ously in space and collide with each other and with bounding
) ) ) ) walls. Hydrodynamic interactiofmomentum exchangde-
where) is the average number of particles in a unit length oftyeen the solid phase and the Newtonian fluid phase is taken
the tube. Hered is set to unity. The linear density can be  into account by applying the no-slip boundary condition at

1 (m\)Mem™

n(m)= -

related to the volume fractiogp of particles byA=¢/¢.,  the boundary nodes. The forces from this interaction and
where ¢, is the volume fraction at maximum linear density. from the collisions determine the translation and rotation of
Using Stirling’s formula form!, we then find that the suspended solid particles according to Newtonian dy-
namics. Note that the LB method used here accounts for all

n(m)ecm™2exp( —m/my), (3)  hydrodynamic effects present in the Navier-Stokes equation,

including viscous forces, pressure forces, and inertial effects.
wheremg= 1/ ¢/ p.—In(d/p.)—1]. The distribution Eq(3) A more detailed description of the method can be found in
is scale invariant fom<<m, and it decreases rapidly fon Ref.[14] and our benchmarking results in RgL5].
>my. The crossover cluster size, diverges wheng The shear-flow condition was realized by placing the sus-
reachesp., which indicates that infinitely large clusters ap- pension between two walls separated by distan¢ef. Fig.
pear in the system in this limit. This divergence represents &), such that the walls moved with speeg, in opposite
jamming limit at which viscosity is also expected to diverge directions. Periodic boundary conditions were imposed in the
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FIG. 3. (a) Cluster-size distributions fap=0.4: Rg=0.01(A), FIG. 4. (a) Difference of the simulated and Newtonianv

Re,=0.1 (0), Rg,=1.0 (O). The solid lines indicate the distribu- velocity profile, normalized by,, as a function of distance from the
tions predicted by KCM(b) m, as a function of¢ for Re,=0.06  lower wall, for Rg=0.1 (solid line), Re,=1.0 (dotted ling, and
(0),0.3 (M),0.8 (@),1.4 (A); the channel width ish=130. For  Re,=10.0 (broken ling. (b) Apparent and intrinsic viscosities as
Re,=0.06 another channel width was also usee;260(0). The  functions of Rg for h=130 (broken line,O) and h=260 (solid
solid line is the theoretical relation E(). line, #), respectively.

flow direction. The density of the suspended particles wasize. In general the size distribution may, however, depend
2.5 times that of the carrier fluid, and no Brownian motionon both¢ and Re.
was implemented. Given this basic result, we now proceed to seek the

The volume fraction(area fractioh of the particles was ¢|uster-size parameten,, and 7, , in the form
varied between¢=0.20 and ¢=0.45. These values are
clearly above the regime in which E(.) is valid, and below Me=mg(¢,Re), 7= 7,($,Rey). (5)
the jamming transition limit which for the 2D case consid-
e_red hgre is that of a regular square I.attice of spherica] Par |y particular, we test against numerical results the two
ticles, i.e.,¢c=/4. In the used numerical method the kine- 4qgitional explicit predictions of the KCM model, namely
matic viscosity of the carrier fluid is related to the LB 4t 7, is a function of onlym,, and thatm, is given in
relaxation parameter by v=(27—1)/6. Here we used  torms of the volume fraction of particles as
=0.55 wherebyr=1/60 [in lattice units(lu)]. The particle

i) .,

Reynolds number Re yd?/v, with y=2v,/h the mean -1
be

¢

——In

¢c

shear rate, was varied between 0.001 and 13. The size of the mo=msM(p)=
simulation grid was 138450 lattice points and the particle
diameter 12 lu. A few larger simulations with 26@00 grid

size were performed in order to estimate the finite-size ef he present numerical simulations show qualitatively differ-
fects. ent behavior in three distinct flow regimes: viscous regime
for Re,<0.1, transition regime for Re-1, and inertial re-
V. RESULTS gime for Rg=10.
' In the viscous regime there is no visible formation of

Figure 2 shows snapshots of suspensions for particle Reyparticle layers near the walls and the average size of the
nolds numbers Re=0.1, 1, and 10. Some typical particle rotating clusters is small as can be seen in e.g., K. 2
aggregategclusters are indicated in the figure. Clusters comparison between E(6) and simulation results reveals a
were identified such that the largest allowed distance beclose to perfect agreement in this regifffig. 3(b)]. (For
tween the nearest-neighbor particles within an aggregate waarger values of Rg mg increases considerablyrhe aver-
one lu. In accordance with the common view discussed@ge velocity profile across the channel displays only small
above, two types of clusters with quite distinct characteristicdluctuations around a Newtonidstraighy profile, as demon-
indeed appear in the 2D flow. Near the moving walls, hori-strated in Fig. 49). This regime is thus that of laminar Stokes
zontal layers of particles can be found. These layers appedipw. We would consequently expect the effective viscosity
at a relatively low Rg and their formation mechanism is to have little, if any, Rg dependence. This is confirmed in
most likely related to lateral hydrodynamic forcebft  Fig. 4b). We can then proceed to extract the functiaf Eq.
forceg exerted on particles moving near a solid wdp].  (4). This can be done by plotting, — 1 as a function ofng.
The dynamics of these layers is not studied here in mordhe result is shown in Fig. 5. For the lowest values of Re
detail. In the interior of the flow channel, chainlike clusterslinear functionf(mg)~0.5m, gives a reasonable fit to the
form and rotate under the shear flow, much in accordanc&imulation data. It is also worth noting that when this form of
with the generic clustering model discussed above. fis inserted in Eq(4), the Krieger formula is found foi/ ¢

In the entire region covered by the present simulations thelose to unity. For comparison, the Krieger formula (1
size distribution of the rotating clusters is indeed given by— ¢/ $¢) 2 with ¢=¢(my) via Eq.(6) is also shown in Fig.
Eq. (3) as predicted by the KCM. This is demonstrated in5(a). In the viscous regime we thus have,=ms“M(¢),
Fig. 3(@). Thus,my is the only parameter indicative of cluster and

(6)
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Above Rg~10 flow instabilities arise signifying an in-

8 (b) cipient inertial regime. In these conditions particle layers
6 . near the walls largely disappear. The typical cluster size in-
1 7 e side the flow region also starts to decrease due to stronger
Voal )0t ‘ velocity fluctuations. This is seen as a slight decreasapf
S 0 o when compared to the transition regiffég. 5b)]. The un-
2 . reduced form of Eq(5) is valid. The S shape of the velocity
- profile becomes more pronouncé¢Big. 4@] and 7, in-

15 00 5 10 15 20 25 30  creases rapidly with increasing Réig. 4(b)]. Based on our
my earlier work[17], this shear thickening seems to be related to
the enhanced relative contribution of the solid phase in the
total shear stress. The increased particulate stress arises due
FIG. 5. (@ 7,—1 as a function ofn, for Rg;<1 and$=0.2 1o inertial effects resulting in enhanced fluid-particle interac-
(0),0.3(1),0.35(A),0.4 (0),0.45©). The filled symbols indi-  tion through pressure forcé48.
cate Rg=0.06. (b) Rg,=13.0. Filled symbols correspond to the
inertial regime, whereinm, slightly decreases. The solid line and
the dotted line indicate the results of Krieger formula with powers V. CONCLUSION
—1.8 and—2.0, respectively. The broken line ist1.5mj.

In conclusion, we used a generic KCM to study the basic

b\ 2 mechanisms underlaying shear thickening of particulate sus-

7= 77r(mo)mlJro_smom( 1—— | (7) pensions in the regime where hydrodynamical forces domi-

be nate. We also performed direct numerical simulations of a

which means thay, depends only omy, given by the KCM 2D shear flow using the lattice-Boltzmann method. We ex-

model pect the results obtained to be qualitatively valid also for 3D
! flows.

In the transition regime wall layers develop and reach The cluster-size distribution of the suspended particles is

their maximum average siz_e. Also the size of the rOtatin%cale invariant below an exponential cutiee Eq.(3)] in
clusters(i.e., mg) grows considerably. Both these effects arey o regime covered by the present simulations. Three quali-

\(Iglk;g ?arfl?:).ezgt)a.e;'of\pcl)erxelr—igzbl; g?sg)r;?egg\\//vinir?yﬂﬁg tatiyely different flow rggimes were identified. In the vispous

regime but not in proportion to fhe increrase . In the regime where the .part|.cle Reynolds n_umbegﬂ@.l, chaln'—

transition regime like clusters rotatln_g m_the _shear field are comparatively
small, and the relative viscosity, is a function of only the

m0=m0(¢,R%)>mKCM(¢), typical cluster size given by the KCM model. In this regime
0 the KCM model can be linked to the Krieger formula via
7, = 1:(My,R) <1+ 0.5mp. (8)  Egs.(6) and (7). This suggests that the origin of the rather

universal validity of Krieger formula at least partially finds
In this regime we thus have the general form of E§. its explanation in the general assumptions of the KCM
without any reduction of dependencies. This means that thenodel. In the transition regime Re 1, the size of the clus-
KCM model now fails, except for the form of the cluster-size ters grows considerably, but the typical size is no longer
distribution. The velocity profile deviates from the Newton- given by the KCM model. Alsa;, begins to grow with Rg,
ian one, and an S-shaped profile with higher shear close thut not in proportion to the growth of the cluster size. Inertia
the walls is developeffFig. 4(a)]. Consequently, two differ- begins to take effect already in the transition regime, but
ent definitions of viscosity are possible: intrinsic viscosity, especially in the thirdinertia) regime where Rg=10. In
which is a bulk property calculated using the shear rate in théhe inertial regime flow becomes more unstable and there is
middle of the channel, and apparent viscosity calculated usio simple correlation between, and cluster size. The pro-
ing the average shear ratmeasurable but affected by the nounced shear thickening in this regime seems to be related
flow profile, i.e., boundary layersThe two viscosities are to enhanced relative contribution of the solid phase to the
displayed in Fig. 4o) for a few values of Rg total shear stress in the suspension.
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